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Abstract We consider a class of time-dependent harmonic oscillators, H ( r )  = p2/2mt" + 
mozt'q2/2, whose mass and frequency vary as non-negative powers of time. Classically 
they describe damping oscillators slowly decaying as negative powers of time. Using the 
connection between classical and quantum harmonic oscillators we find analytically he Lewis- 
Riesenfeld invariants, obtain the exact quantum states. and compare these with the Caldirola- 
Kanai oscillator. , 

1. Introduction 

The explicitly timedependent quantum systems as non-stationary systems have been along- 
standing mathematical problem not yet completely solved in general. The most general and 
frequently used method at present is the adiabatic method [l]. However, for explicitly 
time-dependent harmonic oscillators Lewis and Riesenfeld (LR) [2-31 have introduced an 
important quantum mechanical invariant and found the exact quantum states in terms of 
the invariant eigenstates up to some explicitly timedependent phases. Since then numerous 
variants and applications r4-191 of the LR invariant method have been introduced and used. 
It still remains a difficult task to solve the nonlinear equation for the parameter entering 
the LR invariant equation. As one of the variants, we showed in the previous paper [20] 
that there exists a connection between classical and quantum harmonic oscillators based on 
the Lie algebra 4 2 ,  l).. It is relatively easy to obtain exactly the integrats of the classical 
equation of motion for many physically interesting cases compared to the original nonlinear 
equation for the LR invariant. 

There are also other methods to find the exact quantum states for timedependent 
harmonic oscillators, one of which is to evaluate directly the evolution operator [21] using 
the Lie algebra su(1, 1) that is isomorphic to so(2,l). Of particular practical use is the 
disentangled evolution operator which can be determined by the same integrals of the 
classical equation of motion 1221. Using the disentangled evolution operator one is able 
to find the exact quantum states in terms of the time-dependent number states of the new 
timedependent number operator, which are the displaced and squeezed states of the initial 
states [23,24]. It is also pointed out that the coherent states constructed from the number 
states of the LR invariant are the squeezed states 1251. 

In this paper, we shall find the LR invariant analytically for a class of time-dependent 
harmonic oscillators whose mass and frequency vary as non-negative powers of time. It is 
shown that these oscillators describe damping oscillators slowly decaying as negative powers 
of time classically. The method that will be used in this paper is the connection between 
classical and quantum harmonic oscillators that enable one to express the LR invariant in 
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terms of the integrals of classical equations of motion [20]. Using the LR invariant we shall 
find the exact quantum states for these oscillators. Finally the connection is applied to the 
Caldirola-Kanai oscillator [26,27], whose LR invariant and quantum states are well known. 

2. Classical oscillators 

We consider a class of explicitly time-dependent harmonic oscillators of the form 

p’ + mW’tbqZ 
H ( t )  = - 

2mt‘ 2 

whose mass and frequency vary as some non-nezative powers of time. The Hamiltonian 
equations of motion yield 

(2.2) 
i j ( t )+  ;q(t)+o2tb-’q(r) a .  = o  

where the dots denote derivatives with respect to f .  The solutions [28] are 

(2.3) 

where J,  and Nu are the Bessel functions, and 

unless y = 0. For sufficiently large t ,  the solutions have the asymptotic forms q ( t )  = t-b/z 
for y > 0 and q ( t )  % f ’ - L ,  for y e 0. Thus they describe damping oscillators slowly 
decaying as some negative powers of time compared with an exponentially decaying 
oscillator. 

One can express the momentum and position in terms of initial data by 

(2.5) 
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3. The LR invariant 

The quantum harmunic oscillator corresponding to (2.1) obeys the Schrodinger equation (in 
units of f i  = 1) 

where carets denote operators. It is well known that the quantum harmonic oscillator has a 
Lie algebra sb(2,  1 )  with a basis [29-311 

i2 L3 = -. 6 i + i 8  
2 2 

Lz = i2 L ,  =-  
2 

Based on the Lie algebra, we find the LR invariant of the form 

(3.2) 

(3.3) 

that should satisfy the invariant equation 

d A  a . .  -z(r) = -z( t )  - i[i(t), By)] = o 
dt at 

d g l ( t )  2h2(t) -2hI ( t )  0 gl ( t )  

g3w o 2 ~ )  --2hz(t) g 3 ( t )  

(3.4) 

which in component form reads 

- (sz(0) = ( h3W 0 -hi( t )  ) ( g m )  . (3.5) dt 

Using the connection between classical and quantum harmonic oscillators [20], one finds 
the LR invariant of the form 

(3.6) 
-2Q1 Qo 

- 2 4  Po 
(%) = (-9 PoQo+ PiQi -PoQi 

Equation (3.6) prescribes the evolution of the LR invariant at an arbitrary time in terms of 
initial data. We may find exactly the LR invariant without the initial data by imposing a 
suitable boundary condition and taking a limiting procedure, which will be done below. 

3.1. The case y > 0 
For sufficiently large t ,  that is, for large z ,  we have the asymptotic forms 

Substituting the asymptotic forms [28] 
- 



i 
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for large 20, choosing cg = p’y’m’cl, and taking a limit to, zo + cc) in (3.6), we obtain 
finally the one-parameter-dependent LR invariant 

By directly substituting (3.9) into (3.5) and using the equation for the Bessel functions 
[28],  one can show that (3.9) is indeed the LR invariant. The one-parameter-dependent LR 
invariant thus obtained is a consequence of the linear equation (3.5). We shall choose the 
constant C I  = I / m  for the sake of convenience, which makes the coefficient of g l ( t )  (or 
the most dominant term of the kinetic energy) of the LR invariant the same as that of the 
harmonic oscillator (3.1). 

One also finds the LR invariant in a power series of z, again using the asymptotic forms 
for the Bessel functions [28] 

J d z )  = ,/&(v,z)cosx R Z  - Z(u,z)sinx) 

N,(z) = F ( w ( u , z ) i i n X  X Z  +Z(v,z)cosX) 

(3.10) 

where x = z - ( v / 2  + 4 ) ~ .  and 

where 
(U, 0) = 1 

(v. k) = 
(4~’  - 1)(4~’ - 3’) . . . (4~ ’  - (2k - 1)’) 

k!2% 
Then, after some algebra, the LR invariant is given by 

(3.11) 

(3.12) 

g1(t) = - P”+’ z”-’[w’(u, z )  + Z’(U, z ) ]  
m 

(3.13) 
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Note that the LR invariant will have a finite series expansion only when 

2 2n - 1 
(3.14) 

for some positive integer n. 

3.2. The case of y < 0 

In this case z + 0 as r + bo, so we use the asymptotic forms for the Bessel functions 1281 

(3.15) 

For small z we have the asymptotic forms 

&?*(I) z clp-4”z4”. g2( t )  z C2O(Z2”)  g3(t)  E c3. (3.16) 

Then choosing c3 = (2ym/ r ( ~ ) ) ~ ( p / 2 ) ” c 1  and taking a limit to + bo, zo + 0, we obtain 
the following one-parameter-dependent LR invariant: 

g1(t) = p-’”clz2”J:(z) 

g3( t )  = p 2” y 2 m 2 C ~ Z - ~ ” ( U J , ( Z )  +zJ;(z))’. 
g d f )  = - y m c t J d z ) ( u M z )  +zJ:(z ) )  (3.17) 

In order to have the same coefficient for the most dominant terms of the kinetic energy 
of the Hamiltonian and LR invariant as in section 3.1, we choose the integration constant 
c1 = [r2(u + l ) / m ] ( 2 / @ ) Z ” .  Then we have the LR invariant of the form 

(3.18) 

g 3 ( t )  = 2 2 y r 2 ( ~  + 1)y2mz-2”(uJ,(z) + Z J : ( Z ) ) ~ .  

A direct calculation shows that (3.18) satisfies (3.5). 

4. Exact quantum states 

It is well known that once the LR invariant is found, the exact quantum states of the 
Schrodinger equation in an analytic form follow immediately 12-31. To construct the Fock 
space of the LR invariant, a generalized hannonic oscillator, we canonically transform the 
old operators into the new ones: 
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Using the fact that the eigenvalues of the LR invariant are constants of motion, which can 
also be shown directly, for example from (3.9). to have 

J(Sl(t)S3(z) -Si(t)) = 0 
we introduce the creation and annihilation operators by 

(4.2) 

(4.3) 

a 
--a(t) at = s*(f)n+(t) f €*(t)a(t) 

and 

where 

(4.7) 

The expectation values of the Hamiltonian of harmonic oscillator (3.1) are given by 

(4.8) 

(4.9) 

1 = h(t)(n + 9)  
where 

hs( t )  = m m  Z b  . 1 
h]  ( t )  = - 

mta 
Then it is known that the exact quantum states of the Schrodinger equation (3.1) are 

(h(t) - i+))(n + f )  (4.10) 

and in coordinate representation 

(4.11) 
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5. Comparison with the CaIdirola-Kanai oscillator 

The Caldirola-Kanai oscillator [27,281 which has an exponentially increasing mass and 
frequency has been studied through various methods [33-381 and is one of the most typical 
timedependent quantum systems whose exact quantum states and LR invariant are known. 

The Caldirola-Kanai oscillator 

p 2  + mw2ek'q2 
2 

H ( t )  = - 
2me21 

whose equation of motion is 

;i(f) + aQ(t) + w2q(t) = 0 

describes a damping harmonic oscillator. The solutions are 

where 

(5.3) 

(5.4) 

Here we shall consider the case of weak damping (w > a) only, but the result below can 
be easily extended to the other case. The momentum and position are determined by (2.5) 
as 

1 
n ~ o ( t , t o )  = - e Y ~ ' - ' ~ ) [ ~ c o s ~ ~ ( t - t 0 )  -as inn( t - to) l  

For sufficiently large f, we have the asymptotic forms for the LR invariant 

gl (t) 2 cle-k' gz@) 2 cz g3(t) 2 c3e . (5.6) 2 1  

Setting c2 = mac1 and c3 = m2w2cl, we obtain the one-parameter LR invariant 

gl(t) = cle-2uI g z ( t )  = mac1 g3(t) = m2w2clez"'. (5.7) 

Choosing the constant c1 = I/m, the LR invariant then has the form 

Note that the LR invariant can now be rewritten as [33] 

(5.8) 

i d  + d d  
2 

i(t) = f i ( 2 )  t a (5.91 
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We find the frequency of the LR invariant as 

and 

a .  2 0 2  
h(f)  = -. E ( t )  = --I 

s2 Q 

(5.10) 

(5.11) 

Therefore, .. Jm (4.10) we obtain the exact eigenfunctions for the 1. Jdirola-Kanai oscillator 

&(q, t )  = , / x e x p  2 % ! f i  { [ a t  - iS2 (?I + i) t - E$]} 2 H. ( m e Q ' q )  (5.12) 

where H, are the Hermite polynomials. Note that the exact eigenfunctions differ from those 
in [33] by some trivial factors. 

6. Conclusion 

In this paper we found the LR invariant analytically for a class of time-dependent harmonic 
oscillators (2.1) which have time-dependent mass and frequency as some non-negative 
powers of time. Depending on the power laws of time we obtained the one-parameter- 
dependent LR invariants (3.9). (3.17) and (AS). With a choice of the parameter that makes 
the kinetic energy term of the LR invariant approach that of the Hamiltonian for sufficiently 
large times, the LR invariant took the forms (3.13) and (3.18). In particular, the LR invariant 
has a finite series expansion if the condition (3.14) is satisfied. In the asymptotic region 
of sufficiently large times it is observed that the most dominant terms of the LR invariant 
when expanded asymptotically constitute the Hamiltonian itself, and that the asymptotic 
region is the adiabatic region for the superadiabatic expansion [39]. It is also found that the 
power law timedependent harmonic oscillators have all the features of the Calduola-Kanai 
oscillator as non-stationary dissipative quantum systems except that now the power law 
dependence has replaced the exponential dependence. 

One may construct the coherent states for the timedependent oscillator'(3.1) out of 
the number states (4.10) of the LR invariant according to [8]. It is pointed out that these 
coherent states at a late time are simply the displaced and squeezed states of an early state 
r7.51. This can be understood from the fact that the creation and annihilation operators (4.3) 
of the LR invariant depend explicitly on time so that the vacuum at the early time evolves 
into the squeezed vacuum at the late time [40]. One may also evaluate the disentangled 
evolution operator according to [24] using the integrals of the classical equation of motion 
(2.3). express the evolution operator as the product of the squeezing and Weyl displacement 
operators, and show that the exact quantum states are the displaced and squeezed states. 
This evolution operator method differs from the LR invariant method used in this paper in 
many respects. 
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Appendix. The case y = 0 

The case y = 0 occurs when a = b + 2. The equation of motion now becomes 

There are power law solutions 

unless a = 1 f 2w. We shall restrict ourselves below to the special case of U > 1 + 2w. 
The momentum and position can be expressed as 

where 

A f f  = a+ -a-. (A61 

After some trial and error we are able to find the asymptotic forms 

g1 (to) 1 Clt,". g*(to) 1 c z t p  gS(t0) = c3t0-~'. (A7) 

Substituting (A7) into (3.6). taking a limit to 3 CO, and choosing cz = (mci+/2)cl, 
c3 = m'cztc1, we find the one-parameter-dependent LR invariant without the initial data: 

By directly putting (AS) into (3.5) we show that (AS) indeed satisfies the LR invariant 
equation. 
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